484 research outputs found

    金属-有機錯体を基盤としたプロトン-電子カップリング制御ならびに機能性発現に関する研究

    Get PDF
    京都大学新制・課程博士博士(理学)甲第24177号理博第4868号京都大学大学院理学研究科化学専攻(主査)教授 北川 宏, 教授 有賀 哲也, 教授 吉村 一良学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDGA

    Performance Enhancement of Multipath TCP for Wireless Communications with Multiple Radio Interfaces

    Get PDF
    ArticleMultipath TCP (MPTCP) allows a TCP connection to operate across multiple paths simultaneously and becomes highly attractive to support the emerging mobile devices with various radio interfaces and to improve resource utilization as well as connection robustness. The existing multipath congestion control algorithms, however, are mainly loss-based and prefer the paths with lower drop rates, leading to severe performance degradation in wireless communication systems where random packet losses occur frequently. To address this challenge, this paper proposes a new mVeno algorithm, which makes full use of the congestion information of all the subflows belonging to a TCP connection in order to adaptively adjust the transmission rate of each subflow. Specifically, mVeno modifies the additive increase phase of Veno so as to effectively couple all subflows by dynamically varying the congestion window increment based on the receiving ACKs. The weighted parameter of each subflow for tuning the congestio

    The Emerging of Hydrovoltaic Materials as a Future Technology: A Case Study for China

    Get PDF
    Water contains tremendous energy in various forms, but very little of this energy has yet been harvested. Nanostructured materials can generate electricity by water-nanomaterial interaction, a phenomenon referred to as hydrovoltaic effect, which potentially extends the technical capability of water energy harvesting. In this chapter, starting by describing the fundamental principle of hydrovoltaic effect, including water-carbon interactions and fundamental mechanisms of harvesting water energy with nanostructured materials, experimental advances in generating electricity from water flows, waves, natural evaporation, and moisture are then reviewed. We further discuss potential applications of hydrovoltaic technologies, analyze main challenges in improving the energy conversion efficiency and scaling up the output power, and suggest prospects for developments of the emerging technology, especially in China

    Reducing Transport Latency for Short Flows with Multipath TCP

    Get PDF
    Multipath TCP (MPTCP) has been an emerging transport protocol that provides network resilience to failures and improves throughput by splitting a data stream into multiple subflows across all the available multiple paths. While MPTCP is generally beneficial for throughput-sensitive large flows with large number of subflows, it may be harmful for latency-sensitive small flows. MPTCP assigns each subflow a congestion window, making short flows susceptible to timeout when a flow only contains a few packets. This condition becomes even worse when the paths have heterogeneous characteristics as packet reordering occurs and the slow paths can be used with MPTCP, causing the increased end-to-end delay and the lower application Goodput. Thus, it is important to choose the appropriate subflows for each MPTCP connection to achieve the good performance. However, the subflows in MPTCP are determined before a connection is established, and they usually remain unchanged during the lifetime of that connection. To address this issue, we propose DMPTCP, which dynamically adjusts the subflows according to application workloads. Specifically, DMPTCP first utilizes the idea of TCP modeling to estimate the latency on the path under scheduling and the data amount sent on the other paths simultaneously, and then decides the set of subflows to be used for certain application periodically with the goal of reducing completion time for short flows and achieving a higher throughput for long flows. We implement DMPTCP in a Linux server and conduct extensive experiments both in NS3 and in Linux testbed to validate its effectiveness. Our evaluation shows that DMPTCP decreases the completion time by over 46.55% compared to conventional MPTCP for short flows while increases the Goodput up to 21.3% for long-lived flows

    Reducing Transport Latency for Short Flows with Multipath TCP

    Get PDF
    Multipath TCP (MPTCP) has been an emerging transport protocol that provides network resilience to failures and improves throughput by splitting a data stream into multiple subflows across all the available multiple paths. While MPTCP is generally beneficial for throughput-sensitive large flows with large number of subflows, it may be harmful for latency-sensitive small flows. MPTCP assigns each subflow a congestion window, making short flows susceptible to timeout when a flow only contains a few packets. This condition becomes even worse when the paths have heterogeneous characteristics as packet reordering occurs and the slow paths can be used with MPTCP, causing the increased end-to-end delay and the lower application Goodput. Thus, it is important to choose the appropriate subflows for each MPTCP connection to achieve the good performance. However, the subflows in MPTCP are determined before a connection is established, and they usually remain unchanged during the lifetime of that connection. To address this issue, we propose DMPTCP, which dynamically adjusts the subflows according to application workloads. Specifically, DMPTCP first utilizes the idea of TCP modeling to estimate the latency on the path under scheduling and the data amount sent on the other paths simultaneously, and then decides the set of subflows to be used for certain application periodically with the goal of reducing completion time for short flows and achieving a higher throughput for long flows. We implement DMPTCP in a Linux server and conduct extensive experiments both in NS3 and in Linux testbed to validate its effectiveness. Our evaluation shows that DMPTCP decreases the completion time by over 46.55% compared to conventional MPTCP for short flows while increases the Goodput up to 21.3% for long-lived flows
    corecore